Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.319
Filtrar
1.
J Cancer Res Clin Oncol ; 150(4): 179, 2024 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-38584230

RESUMO

PURPOSE: The present study aims to determine the molecular mechanism mediated by RAD51 antisense RNA 1 (RAD51-AS1) in ovarian cancer (OvCA). METHODS: The data associated with RAD51-AS1 in OvCA were obtained from the Cancer Genome Atlas (TCGA) and the Gene Expression Omnibus (GEO) database. Relative expression of RAD51-AS1 was detected. Determination of cell proliferation, metastasis, and invasion was performed by cell counting, colony formation, would-healing, and transwell invasion assays. Protein levels were detected by western blotting. The molecular mechanism mediated by RAD51-AS1 was predicted by bioinformatics analysis and verified by dual-luciferase reporter assays. Subcutaneous tumorigenesis models were used to confirm the function of RAD51-AS1 in vivo. RESULTS: Data from TCGA and GEO showed that RAD51-AS1 was associated with poor prognosis in OvCA patients and DNA repair, cell cycle, focal adhesion, and apoptosis in SKOV3.ip cells. High levels of RAD51-AS1 were detected in OvCA cells. Overexpressing RAD51-AS1 enhanced the proliferative, invading, and migratory capabilities of OvCA cells in vitro while silencing RAD51-AS1 exhibited the opposite effects. Mechanically, RAD51-AS1 elevated eukaryotic initiation factor 5A2 (EIF5A2) expression as a sponge for microRNA (miR)-140-3p. Finally, the role of RAD51-AS1 was verified by subcutaneous tumorigenesis models. CONCLUSION: RAD51-AS1 promoted OvCA progression by the regulation of the miR-140-3p/EIF5A2 axis, which illustrated the potential therapeutic target for OvCA.


Assuntos
MicroRNAs , Neoplasias Ovarianas , RNA Longo não Codificante , Feminino , Humanos , Carcinogênese/genética , Linhagem Celular Tumoral , Movimento Celular/genética , Proliferação de Células/genética , Transformação Celular Neoplásica/genética , Regulação Neoplásica da Expressão Gênica , MicroRNAs/genética , MicroRNAs/metabolismo , Neoplasias Ovarianas/genética , Rad51 Recombinase/genética , RNA Longo não Codificante/genética
2.
Chirality ; 36(4): e23664, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38561319

RESUMO

Linear dichroism spectroscopy is used to investigate the structure of RecA family recombinase filaments (RecA and Rad51 proteins) with DNA for clarifying the molecular mechanism of DNA strand exchange promoted by these proteins and its activation. The measurements show that the recombinases promote the perpendicular base orientation of single-stranded DNA only in the presence of activators, indicating the importance of base orientation in the reaction. We summarize the results and discuss the role of DNA base orientation.


Assuntos
DNA , Rad51 Recombinase , Rad51 Recombinase/química , Rad51 Recombinase/genética , Rad51 Recombinase/metabolismo , Estereoisomerismo , DNA/química , DNA de Cadeia Simples
3.
Nat Commun ; 15(1): 2132, 2024 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-38459011

RESUMO

Growth factor receptor-bound protein 2 (GRB2) is a cytoplasmic adapter for tyrosine kinase signaling and a nuclear adapter for homology-directed-DNA repair. Here we find nuclear GRB2 protects DNA at stalled replication forks from MRE11-mediated degradation in the BRCA2 replication fork protection axis. Mechanistically, GRB2 binds and inhibits RAD51 ATPase activity to stabilize RAD51 on stalled replication forks. In GRB2-depleted cells, PARP inhibitor (PARPi) treatment releases DNA fragments from stalled forks into the cytoplasm that activate the cGAS-STING pathway to trigger pro-inflammatory cytokine production. Moreover in a syngeneic mouse metastatic ovarian cancer model, GRB2 depletion in the context of PARPi treatment reduced tumor burden and enabled high survival consistent with immune suppression of cancer growth. Collective findings unveil GRB2 function and mechanism for fork protection in the BRCA2-RAD51-MRE11 axis and suggest GRB2 as a potential therapeutic target and an enabling predictive biomarker for patient selection for PARPi and immunotherapy combination.


Assuntos
Replicação do DNA , Neoplasias , Animais , Humanos , Camundongos , DNA , Instabilidade Genômica , Proteína Adaptadora GRB2/genética , Proteína Adaptadora GRB2/metabolismo , Imunidade Inata , Proteína Homóloga a MRE11/metabolismo , Neoplasias/genética , Rad51 Recombinase/genética , Rad51 Recombinase/metabolismo
5.
JCO Precis Oncol ; 8: e2300483, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38427930

RESUMO

PURPOSE: To meet the urgent need for accessible homologous recombination-deficient (HRD) test options, we validated a laboratory-developed test (LDT) and a functional RAD51 assay to assess patients with ovarian cancer and predict the clinical benefit of poly(ADP-ribose) polymerase inhibitor therapy. METHODS: Optimization of the LDT cutoff and validation on the basis of samples from 91 patients enrolled in the ENGOT-ov24/NSGO-AVANOVA1&2 trial (ClinicalTrials.gov identifier: NCT02354131), previously subjected to commercial CDx HRD testing (CDx). RAD51 foci analysis was performed and tumors with ≥five foci/nucleus were classified as RAD51-positive (homologous recombination-proficient). RESULTS: The optimal LDT cutoff is 54. Comparing CDx genome instability score and LDT HRD scores show a Spearman's correlation of rho = 0.764 (P < .0001). Cross-tabulation analysis shows that the sensitivity of the LDT HRD score is 86% and of the LDT HRD status is 91.8% (Fisher's exact test P < .001). Survival analysis on progression-free survival (PFS) of LDT-assessed patients show a Cox regression P < .05. RAD51 assays show a correlation between low RAD51 foci detection (<20% RAD51+ cells) and significantly prolonged PFS (P < .001). CONCLUSION: The robust concordance between the open standard LDT and the CDx, especially the correlation with PFS, warrants future validation and implementation of the open standard LDT for HRD testing in diagnostic settings.


Assuntos
Antineoplásicos , Neoplasias Ovarianas , Humanos , Feminino , Inibidores de Poli(ADP-Ribose) Polimerases/farmacologia , Inibidores de Poli(ADP-Ribose) Polimerases/uso terapêutico , Recombinação Homóloga/genética , Neoplasias Ovarianas/diagnóstico , Neoplasias Ovarianas/tratamento farmacológico , Neoplasias Ovarianas/genética , Intervalo Livre de Progressão , Rad51 Recombinase/genética
6.
EMBO J ; 43(6): 1043-1064, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38360996

RESUMO

Eukaryotic cells rely on several mechanisms to ensure that the genome is duplicated precisely once in each cell division cycle, preventing DNA over-replication and genomic instability. Most of these mechanisms limit the activity of origin licensing proteins to prevent the reactivation of origins that have already been used. Here, we have investigated whether additional controls restrict the extension of re-replicated DNA in the event of origin re-activation. In a genetic screening in cells forced to re-activate origins, we found that re-replication is limited by RAD51 and enhanced by FBH1, a RAD51 antagonist. In the presence of chromatin-bound RAD51, forks stemming from re-fired origins are slowed down, leading to frequent events of fork reversal. Eventual re-initiation of DNA synthesis mediated by PRIMPOL creates ssDNA gaps that facilitate the partial elimination of re-duplicated DNA by MRE11 exonuclease. In the absence of RAD51, these controls are abrogated and re-replication forks progress much longer than in normal conditions. Our study uncovers a safeguard mechanism to protect genome stability in the event of origin reactivation.


Assuntos
Proteínas de Ligação a DNA , Rad51 Recombinase , DNA/genética , Replicação do DNA , Proteínas de Ligação a DNA/metabolismo , Proteína Homóloga a MRE11/metabolismo , Rad51 Recombinase/genética , Rad51 Recombinase/metabolismo , Humanos
7.
Int J Biol Macromol ; 261(Pt 2): 129843, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38302027

RESUMO

Homologous recombination plays a key role in double-strand break repair, stalled replication fork repair, and meiosis. The RecA/Rad51 family recombinases catalyze the DNA strand invasion reaction that occurs during homologous recombination. However, the high sequence differences between homologous groups have hindered the thoroughly studies of this ancient protein family. The dynamic mechanisms of the family, particularly at the residual level, remain poorly understood. In this work, five representative RecA/Rad51 recombinase family members from all major kingdoms of living organisms: prokaryotes, eukaryotes, archaea, and viruses, were selected to explore the molecular mechanisms behind their conserved biological significance. A variety of techniques, including all-atom molecular dynamics simulation, perturbation response scanning, and protein structure network analysis, were used to examine the flexibility and correlation of protein domains, distribution of sensors and effectors and conserved hub residues. Furthermore, the potential communication routes between the ATP-binding region and the DNA-binding region of each recombinase were identified. Our results demonstrate the conserved molecular dynamics of these recombinases in the early stage of homologous recombination, including cooperative motions between regions, conserved sensing and effecting functional residue distribution, and conserved hub residues. Meanwhile, the unique ATP-DNA communication routes of each recombinase was also revealed. These results provide new insights into the mechanism of RecA/Rad51 family proteins, and provide new theoretical guidance for the development of allosteric inhibitors and the application of RecA/Rad51 family proteins.


Assuntos
Rad51 Recombinase , Recombinases Rec A , Rad51 Recombinase/genética , Rad51 Recombinase/química , Rad51 Recombinase/metabolismo , Recombinases Rec A/genética , Recombinases Rec A/química , Recombinases Rec A/metabolismo , Proteínas de Ligação a DNA/metabolismo , DNA de Cadeia Simples , DNA/química , Recombinases/genética , Recombinases/metabolismo , Trifosfato de Adenosina
8.
Cell Mol Biol (Noisy-le-grand) ; 70(1): 40-45, 2024 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-38372116

RESUMO

The purpose of this study was to explore the differential expression of Pax3, Rad51 and VEGF-C in esophageal gastric junction adenocarcinoma and distal gastric adenocarcinoma and their relationship with cancer occurrence and development. 57 patients with gastric cancer were included and divided into esophageal gastric junction adenocarcinoma group (n=28) and distal gastric adenocarcinoma group (n=29). The positive expressions of Pax3, Rad51 and VEGF-C in the control group were lower than those in the esophageal gastric junction adenocarcinoma group and distal gastric adenocarcinoma group respectively (P<0.05). In esophageal gastric junction adenocarcinoma with low differentiation, positive expressions of Pax3, Rad51, and VEGF-C surpassed those in high/medium differentiation (P<0.05). Serosa-infiltrated cases exhibited higher Pax3 and Rad51 expressions compared to non-infiltrated cases (P<0.05). Rad51 and VEGF-C positivity were notably elevated in cases with lymph node metastasis compared to those without (P<0.05). Distal gastric adenocarcinoma displayed higher VEGF expression than middle/low differentiated adenocarcinomas. Rad51 expression was significantly higher in women than in men (P<0.05). The positive rates of Pax3, Rad51, and VEGF-C were markedly increased in esophageal gastric junction adenocarcinoma and distal gastric adenocarcinoma compared to normal gastric tissue, and these were associated with the degree of differentiation, depth of invasion, and lymph node metastasis in patients. Particularly, Rad51 exhibited a positive correlation with cancer cell differentiation, invasion depth, and lymph node metastasis in cancer tissue.


Assuntos
Adenocarcinoma , Neoplasias Esofágicas , Fator de Transcrição PAX3 , Rad51 Recombinase , Neoplasias Gástricas , Fator C de Crescimento do Endotélio Vascular , Feminino , Humanos , Masculino , Adenocarcinoma/genética , Adenocarcinoma/patologia , Neoplasias Esofágicas/genética , Neoplasias Esofágicas/patologia , Metástase Linfática , Neoplasias Gástricas/genética , Neoplasias Gástricas/patologia , Fatores de Transcrição , Fator C de Crescimento do Endotélio Vascular/genética , Fator de Transcrição PAX3/genética , Rad51 Recombinase/genética
9.
Nat Commun ; 15(1): 1262, 2024 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-38341452

RESUMO

Replication fork reversal, a critical protective mechanism against replication stress in higher eukaryotic cells, is orchestrated via a series of coordinated enzymatic reactions. The Bloom syndrome gene product, BLM, a member of the highly conserved RecQ helicase family, is implicated in this process, yet its precise regulation and role remain poorly understood. In this study, we demonstrate that the GCFC domain-containing protein TFIP11 forms a complex with the BLM helicase. TFIP11 exhibits a preference for binding to DNA substrates that mimic the structure generated at stalled replication forks. Loss of either TFIP11 or BLM leads to the accumulation of the other protein at stalled forks. This abnormal accumulation, in turn, impairs RAD51-mediated fork reversal and slowing, sensitizes cells to replication stress-inducing agents, and enhances chromosomal instability. These findings reveal a previously unidentified regulatory mechanism that modulates the activities of BLM and RAD51 at stalled forks, thereby impacting genome integrity.


Assuntos
60555 , Replicação do DNA , Humanos , RecQ Helicases/genética , RecQ Helicases/metabolismo , DNA/genética , DNA/metabolismo , Proteínas/metabolismo , Instabilidade Genômica , Rad51 Recombinase/genética , Rad51 Recombinase/metabolismo , Fatores de Processamento de RNA/metabolismo
10.
Mol Cell ; 84(3): 409-410, 2024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-38307000

RESUMO

In this issue of Molecular Cell, Lim et al.1 reveal new insights into the distinct roles of BRCA2 in coping with DNA breaks, highlighting homologous recombination as the pivotal function that affects tumorigenesis and therapy response.


Assuntos
Replicação do DNA , Rad51 Recombinase , Proteína BRCA2/genética , Proteína BRCA2/metabolismo , Quebras de DNA , Reparo do DNA , Recombinação Homóloga/genética , Rad51 Recombinase/genética , Humanos , Animais , Camundongos
11.
Nat Commun ; 15(1): 1568, 2024 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-38383600

RESUMO

Drugs targeting the DNA damage response (DDR) are widely used in cancer therapy, but resistance to these drugs remains a major clinical challenge. Here, we show that SYCP2, a meiotic protein in the synaptonemal complex, is aberrantly and commonly expressed in breast and ovarian cancers and associated with broad resistance to DDR drugs. Mechanistically, SYCP2 enhances the repair of DNA double-strand breaks (DSBs) through transcription-coupled homologous recombination (TC-HR). SYCP2 promotes R-loop formation at DSBs and facilitates RAD51 recruitment independently of BRCA1. SYCP2 loss impairs RAD51 localization, reduces TC-HR, and renders tumors sensitive to PARP and topoisomerase I (TOP1) inhibitors. Furthermore, our studies of two clinical cohorts find that SYCP2 overexpression correlates with breast cancer resistance to antibody-conjugated TOP1 inhibitor and ovarian cancer resistance to platinum treatment. Collectively, our data suggest that SYCP2 confers cancer cell resistance to DNA-damaging agents by stimulating R-loop-mediated DSB repair, offering opportunities to improve DDR therapy.


Assuntos
Reparo do DNA , Estruturas R-Loop , Quebras de DNA de Cadeia Dupla , Recombinação Homóloga , Proteína BRCA1/genética , Proteína BRCA1/metabolismo , DNA , Rad51 Recombinase/genética , Rad51 Recombinase/metabolismo , Reparo de DNA por Recombinação
12.
Mol Med Rep ; 29(3)2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38334141

RESUMO

Cardiovascular disease (CVD) is one of the leading causes of mortality worldwide, and multiple single­nucleotide polymorphisms of DNA repair genes have been found to be associated with CVD. The aim of the present study was to assess the effects of the genetic variants of RAD51 recombinase (RAD51) and 8­oxoguanine DNA glycosylase (OGG1) on CVD through genotyping and statistical analysis. Regardless of whether there is a significant association or not, the genotyping data on these two polymorphisms are valuable, because there is limited availability of it in certain populations. A total of 240 blood samples were analyzed and genotyped using TaqMan genotyping; 120 were obtained from cases with a history of CVD, and 120 from cases with no history of CVD. A questionnaire was administered to gather information on age, demographics, sex and clinical features, and confirmation was carried out using medical records. The results of the present study confirmed that the polymorphism rs1052133 in OGG1 had no significant association with CVD. On the other hand, the polymorphism rs1801321 in RAD51 exhibited a significant association with CVD. Collectively, the results of the present study revealed that the polymorphism rs1801321 in RAD51 exhibited a significant association with CVD, however a larger sample size to confirm the present findings, may allow for the early identification of CVD and may aid in the decision­making process concerning treatments for CVD.


Assuntos
Doenças Cardiovasculares , DNA Glicosilases , Rad51 Recombinase , Humanos , Doenças Cardiovasculares/genética , Estudos de Casos e Controles , DNA Glicosilases/genética , Reparo do DNA/genética , Predisposição Genética para Doença , Polimorfismo de Nucleotídeo Único , Rad51 Recombinase/genética , Rad51 Recombinase/metabolismo
13.
J Biol Chem ; 300(3): 107115, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38403248

RESUMO

RAD51-associated protein 1 (RAD51AP1) is known to promote homologous recombination (HR) repair. However, the precise mechanism of RAD51AP1 in HR repair is unclear. Here, we identify that RAD51AP1 associates with pre-rRNA. Both the N terminus and C terminus of RAD51AP1 recognize pre-rRNA. Pre-rRNA not only colocalizes with RAD51AP1 at double-strand breaks (DSBs) but also facilitates the recruitment of RAD51AP1 to DSBs. Consistently, transient inhibition of pre-rRNA synthesis by RNA polymerase I inhibitor suppresses the recruitment of RAD51AP1 as well as HR repair. Moreover, RAD51AP1 forms liquid-liquid phase separation in the presence of pre-rRNA in vitro, which may be the molecular mechanism of RAD51AP1 foci formation. Taken together, our results demonstrate that pre-rRNA mediates the relocation of RAD51AP1 to DSBs for HR repair.


Assuntos
Proteínas de Ligação a DNA , Recombinação Homóloga , Proteínas de Ligação a RNA , DNA , Quebras de DNA de Cadeia Dupla , Reparo do DNA , Rad51 Recombinase/genética , Rad51 Recombinase/metabolismo , Reparo de DNA por Recombinação , Precursores de RNA , Humanos , Proteínas de Ligação a DNA/metabolismo , Proteínas de Ligação a RNA/metabolismo
14.
Mol Cell ; 84(3): 447-462.e10, 2024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-38244544

RESUMO

Tumor suppressor BRCA2 functions in homology-directed repair (HDR), the protection of stalled replication forks, and the suppression of replicative gaps, but their relative contributions to genome integrity and chemotherapy response are under scrutiny. Here, we report that mouse and human cells require a RAD51 filament stabilization motif in BRCA2 for fork protection and gap suppression but not HDR. In mice, the loss of fork protection/gap suppression does not compromise genome stability or shorten tumor latency. By contrast, HDR deficiency increases spontaneous and replication stress-induced chromosome aberrations and tumor predisposition. Unlike with HDR, fork protection/gap suppression defects are also observed in Brca2 heterozygous cells, likely due to reduced RAD51 stabilization at stalled forks/gaps. Gaps arise from PRIMPOL activity, which is associated with 5-hydroxymethyl-2'-deoxyuridine sensitivity due to the formation of SMUG1-generated abasic sites and is exacerbated by poly(ADP-ribose) polymerase (PARP) inhibition. However, HDR proficiency has the major role in mitigating sensitivity to chemotherapeutics, including PARP inhibitors.


Assuntos
Proteína BRCA2 , Replicação do DNA , Rad51 Recombinase , Animais , Humanos , Camundongos , Proteína BRCA2/metabolismo , Reparo do DNA , Instabilidade Genômica , Genômica , Rad51 Recombinase/genética , Rad51 Recombinase/metabolismo , Reparo de DNA por Recombinação
15.
Nat Commun ; 15(1): 866, 2024 Jan 29.
Artigo em Inglês | MEDLINE | ID: mdl-38286805

RESUMO

Homologous recombination (HR) plays critical roles in repairing lesions that arise during DNA replication and is thus essential for viability. RAD51 plays important roles during replication and HR, however, how RAD51 is regulated downstream of nucleofilament formation and how the varied RAD51 functions are regulated is not clear. We have investigated the protein c1orf112/FLIP that previously scored in genome-wide screens for mediators of DNA inter-strand crosslink (ICL) repair. Upon ICL agent exposure, FLIP loss leads to marked cell death, elevated chromosomal instability, increased micronuclei formation, altered cell cycle progression and increased DNA damage signaling. FLIP is recruited to damage foci and forms a complex with FIGNL1. Both proteins have epistatic roles in ICL repair, forming a stable complex. Mechanistically, FLIP loss leads to increased RAD51 amounts and foci on chromatin both with or without exogenous DNA damage, defective replication fork progression and reduced HR competency. We posit that FLIP is essential for limiting RAD51 levels on chromatin in the absence of damage and for RAD51 dissociation from nucleofilaments to properly complete HR. Failure to do so leads to replication slowing and inability to complete repair.


Assuntos
Cromatina , Replicação do DNA , Dano ao DNA , Reparo do DNA , Rad51 Recombinase/genética , Rad51 Recombinase/metabolismo , Humanos , Proteínas Cromossômicas não Histona/genética , Proteínas Cromossômicas não Histona/metabolismo
16.
Oncogene ; 43(1): 35-46, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38007537

RESUMO

Homologous recombination (HR) is a major DNA double-strand break (DSB) repair pathway of clinical interest because of treatment with poly(ADP-ribose) polymerase inhibitors (PARPi). Cooperation between RAD51 and BRCA2 is pivotal for DNA DSB repair, and its dysfunction induces HR deficiency and sensitizes cancer cells to PARPi. The depletion of the DEAD-box protein DDX11 was found to suppress HR in hepatocellular carcinoma (HCC) cells. The HR ability of HCC cells is not always dependent on the DDX11 level because of natural DDX11 mutations. In Huh7 cells, natural DDX11 mutations were detected, increasing the susceptibility of Huh7 cells to olaparib in vitro and in vivo. The HR deficiency of Huh7 cells was restored when CRISPR/Cas9-mediated knock-in genomic editing was used to revert the DDX11 Q238H mutation to wild type. The DDX11 Q238H mutation impeded the phosphorylation of DDX11 by ATM at serine 237, preventing the recruitment of RAD51 to damaged DNA sites by disrupting the interaction between RAD51 and BRCA2. Clinically, a high level of DDX11 correlated with advanced clinical characteristics and a poor prognosis and served as an independent risk factor for overall and disease-free survival in patients with HCC. We propose that HCC with a high level of wild-type DDX11 tends to be more resistant to PARPi because of enhanced recombination repair, and the key mutation of DDX11 (Q238H) is potentially exploitable.


Assuntos
Antineoplásicos , Carcinoma Hepatocelular , Neoplasias Hepáticas , Humanos , Inibidores de Poli(ADP-Ribose) Polimerases/farmacologia , Inibidores de Poli(ADP-Ribose) Polimerases/uso terapêutico , Carcinoma Hepatocelular/tratamento farmacológico , Carcinoma Hepatocelular/genética , Linhagem Celular Tumoral , Neoplasias Hepáticas/tratamento farmacológico , Neoplasias Hepáticas/genética , Antineoplásicos/farmacologia , Recombinação Homóloga/genética , DNA , Rad51 Recombinase/genética , Rad51 Recombinase/metabolismo , DNA Helicases/genética , RNA Helicases DEAD-box/genética , Proteína BRCA2/genética
17.
Nucleic Acids Res ; 52(3): 1173-1187, 2024 Feb 09.
Artigo em Inglês | MEDLINE | ID: mdl-38084915

RESUMO

Efficient DNA repair and limitation of genome rearrangements rely on crosstalk between different DNA double-strand break (DSB) repair pathways, and their synchronization with the cell cycle. The selection, timing and efficacy of DSB repair pathways are influenced by post-translational modifications of histones and DNA damage repair (DDR) proteins, such as phosphorylation. While the importance of kinases and serine/threonine phosphatases in DDR have been extensively studied, the role of tyrosine phosphatases in DNA repair remains poorly understood. In this study, we have identified EYA4 as the protein phosphatase that dephosphorylates RAD51 on residue Tyr315. Through its Tyr phosphatase activity, EYA4 regulates RAD51 localization, presynaptic filament formation, foci formation, and activity. Thus, it is essential for homologous recombination (HR) at DSBs. DNA binding stimulates EYA4 phosphatase activity. Depletion of EYA4 decreases single-stranded DNA accumulation following DNA damage and impairs HR, while overexpression of EYA4 in cells promotes dephosphorylation and stabilization of RAD51, and thereby nucleoprotein filament formation. Our data have implications for a pathological version of RAD51 in EYA4-overexpressing cancers.


Assuntos
Rad51 Recombinase , Transativadores , DNA , Reparo do DNA , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Recombinação Homóloga/genética , Fosfoproteínas Fosfatases/metabolismo , Rad51 Recombinase/genética , Rad51 Recombinase/metabolismo , Tirosina/genética , Humanos , Transativadores/metabolismo
18.
Life Sci Alliance ; 7(3)2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38081641

RESUMO

Homologous recombination (HR) is a DNA repair mechanism of double-strand breaks and blocked replication forks, involving a process of homology search leading to the formation of synaptic intermediates that are regulated to ensure genome integrity. RAD51 recombinase plays a central role in this mechanism, supported by its RAD52 and BRCA2 partners. If the mediator function of BRCA2 to load RAD51 on RPA-ssDNA is well established, the role of RAD52 in HR is still far from understood. We used transmission electron microscopy combined with biochemistry to characterize the sequential participation of RPA, RAD52, and BRCA2 in the assembly of the RAD51 filament and its activity. Although our results confirm that RAD52 lacks a mediator activity, RAD52 can tightly bind to RPA-coated ssDNA, inhibit the mediator activity of BRCA2, and form shorter RAD51-RAD52 mixed filaments that are more efficient in the formation of synaptic complexes and D-loops, resulting in more frequent multi-invasions as well. We confirm the in situ interaction between RAD51 and RAD52 after double-strand break induction in vivo. This study provides new molecular insights into the formation and regulation of presynaptic and synaptic intermediates by BRCA2 and RAD52 during human HR.


Assuntos
Rad51 Recombinase , Proteína de Replicação A , Humanos , Proteína de Replicação A/genética , Proteína de Replicação A/metabolismo , Rad51 Recombinase/genética , DNA de Cadeia Simples/genética , Reparo do DNA/genética , Recombinação Homóloga/genética , Proteína Rad52 de Recombinação e Reparo de DNA/genética , Proteína Rad52 de Recombinação e Reparo de DNA/metabolismo
19.
STAR Protoc ; 5(1): 102791, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38133958

RESUMO

C1orf112/FIRRM is a recently identified DNA damage repair factor that regulates RAD51 in homologous recombination through interacting with the anti-recombinase FIGNL1. Here, we describe steps for purifying C1orf112/FIRRM, FIGNL1, miBRCA2, and RAD51 proteins from Escherichia coli or Saccharomyces cerevisiae cells. We then detail procedures for reconstituting the disassembly of RAD51 filament by C1orf112/FIRRM-FIGNL1 in vitro and the antagonistic effect between C1orf112/FIRRM-FIGNL1 and miBRCA2 on RAD51 filament stabilization. For complete details on the use and execution of this protocol, please refer to Zhou et al. (2023).1.


Assuntos
Proteínas , Rad51 Recombinase , Proteínas/genética , Rad51 Recombinase/genética , Reparo do DNA , Recombinação Homóloga
20.
Anticancer Res ; 44(1): 93-98, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38159995

RESUMO

BACKGROUND/AIM: Statins exert antitumor effects via various mechanisms. Additionally, the recurrence rate of prostate cancer after radiation therapy is lower in patients taking statins. This study investigated the efficacy of combination therapy with statins and irradiation in androgen-independent prostate cancer cells. MATERIALS AND METHODS: PC-3 and LNCaP human prostate cancer cell lines were used in this study. We developed androgen-independent LNCaP cells (LNCaP-LA) by gradually replacing fetal bovine serum (FBS) with charcoal-stripped FBS. Microarray analysis was performed, followed by Ingenuity Pathway Analysis. Cell viability was determined using the MTS assay. RESULTS: Simvastatin alters gene expressions in PC-3 cells. Microarray data showed that the number of differentially expressed genes was the highest in the pathway of "Role of BRCA1 in DNA Damage Response". In the validation, the expression of RAD51, listed in "Role of BRCA1 in DNA Damage Response", decreased significantly by simvastatin in PC-3 cells. Reduction in RAD51 expression following siRNA transfection increased the cytocidal effects of X-ray therapy in PC-3 and LNCaP-LA cells. The combination of simvastatin and irradiation further inhibited cell proliferation compared with monotherapy with either therapy in PC-3 or LNCaP-LA cells. In addition, compared with X-ray monotherapy, the combination of simvastatin and irradiation further enhanced the expression of γH2AX, which is reported to be one of the accurate markers of DNA damage in PC-3 cells. CONCLUSION: Simvastatin decreased the expression of RAD51 in androgen-independent prostate cancer cells. The combination of irradiation and drugs that reduce RAD51 expression can potentially affect androgen-independent prostate cancer growth.


Assuntos
Inibidores de Hidroximetilglutaril-CoA Redutases , Neoplasias da Próstata , Humanos , Masculino , Androgênios/metabolismo , Linhagem Celular Tumoral , Inibidores de Hidroximetilglutaril-CoA Redutases/farmacologia , Neoplasias da Próstata/tratamento farmacológico , Neoplasias da Próstata/genética , Neoplasias da Próstata/radioterapia , Rad51 Recombinase/genética , Tolerância a Radiação , Sinvastatina/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...